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On the paramagnetism of spin in the classical limit 
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Abstract. Spin-$ particles subject to external fields will often exhibit paramagnetism. This 
effect can be formalised in terms of an inequality involving appropriate partition functions 
constructed with spin Hamiltonians which we choose to be of Pauli type. Whereas in 
quantum mechanics it is known that a paramagnetic inequality does not hold true in 
general, herein we investigate the paramagnetism of spin in the classical limit h + 0. We 
apply previous results to derive a classical partition function which, in satisfying the relevant 
inequality, gives rise to general paramagnetism. 

1. Introduction 

In quantum mechanics the notion of spin is introduced as an internal degree of freedom 
of certain quantum particles. The dynamical role of the spin shows up in its relation 
to the statistics of the attached particles. While such a relation has to be postulated 
for non-relativistic quantum mechanics, within relativistic quantum field theory it is 
proved and known as the celebrated spin-statistics theorem (Fierz 1939, Pauli 1940). 
Another aspect of the dynamical influence of spin is related to the behaviour of such 
particles in external magnetic fields. In general, paramagnetic properties of matter 
systems are attributed to the presence of particles with spin. It has been conjectured 
(Hogreve et a1 1978) that the paramagnetic influence of spin is a universal law, but a 
counterexample (Avron and Simon 1979) has shown that this is not the case. Neverthe- 
less, below we shall succeed in proving that at least in a certain classical limit the spin 
shows a general paramagnetic behaviour. 

To be more precise, consider the partition function Z( t ;  H ) ,  t > 0, corresponding 
to the quantum Hamiltonian H 

Z( t ;  H)  =Trexp(- tH).  

The Hamiltonians relevant for our analysis are of Pauli type 

(1) 
k =  I 

Here mk, k = 1,2,3,  are the familiar Pauli matrices and Ak are the components of the 
vector potential of an external electromagnetic field. Furthermore, we assume that the 

+ Permanent address: I N Stanski Institut, Technische Universitat, Ernst-Reuter-Platz 7 ,  1000 Berlin 10, 
West Germany. 

0305-4470/87/ 102805 +08$02.50 0 1987 IOP Publishing Ltd 2805 



2806 H Hogreve 

scalar potential V is such that Z( t ;  HA) <CO for all t > 0 (precise conditions on V and 
the other involved quantities will be stated in 5 2). 

Because of the anticommutativity properties uiuj + ujui = 26,, of the Pauli matrices 
H A  can be equivalently expressed as 

3 3 
HA= C (-ihVk+Ak)’-$h Fkpkl+V 

k = l  k./= I 

where ukl = ;( upl  - upk)  and Fkl is the field tensor Fkl = dkAl - aIAk. For identically 
vanishing vector potentials Ak E 0 and fields Fkl = 0 the corresponding Hamiltonian 
will be denoted by Ho.  

Now a system is said to behave paramagnetically (diamagnetically) if by placing 
it in a magnetic field its free energy decreases (increases). This is equivalent to the 
increase (decrease) of the partition function if an external magnetic field is turned on. 
Hence a universal paramagnetism of spin is equivalent to the inequality 

Z(t; H A ) z Z ( f ;  Ho) (3) 

for all A and for all t > 0. Relation (3) has been conjectured before and is verified to 
first non-vanishing order in formal expansions of the partition function in h and in a 
coupling constant for the external vector potentials (Hogreve et a1 1978). Moreover, 
it holds in the case of a homogeneous magnetic field F = constant. On the other hand, 
Avron and Simon have constructed a counterexample based on a Aharonov-Bohm 
situation where (3 )  is no longer satisfied. Therefore a quantum mechanical universal 
paramagnetism of the form (3) cannot be true in general. 

As just mentioned, on a formal level the relation (3)  has been verified in flrst 
non-vanishing order in h. This suggests that it may be rigorously valid in the classical 
limit h -+ 0. However, for obtaining a reasonable limit of the involved spin variables 
an appropriate limit procedure is required. Such a procedure has been found and 
discussed before (Lieb 1973, Gilmore 1979, Simon 1980). Remember that the spin is 
characterised by a half-integer representation of the rotation group. The key observa- 
tion for taking the classical limit now is that one has to vary the representation such 
that in a certain sense it tends to infinity like h-’ as h goes to zero. In this way, for 
example, SO(3) quantum spins approach classical spins which are given by unit vectors 
on the 2-sphere S2 .  The same procedure has been applied to study the classical limit 
of partition functions for Hamiltonians with Yang-Mills potentials (Hogreve et a1 
1983). In particular, a complete asymptotic expansion has been derived for such 
quantities by Schrader and Taylor (1984). Below we shall apply these results to spin 
Hamiltonian operators ( 1 )  and obtain for Z( t ;  H A )  a classical partition function of 
the form 

Here the u k l ( p )  are the classical spin variables, i.e. functions on the unit sphere S’, 
and d p  denotes the normalised measure on S 2 .  

Furthermore, we shall show that Zcl(t; HA) is greater than the partition function 
for vanishing field tensor, namely 

Zdt;  Ho) Zd t ;  H A )  

for all t > 0, which is the paramagnetic inequality in the classical limit. 
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We remark that spinless particles behave quantum mechanically in the opposite 
way to those with spin. The diamagnetic relation 

Z ( t ;  fiA)sz(t; fro) 
for spinless Hamiltonians fiA = Z, ( -ihVl +A, )  + V is equivalent to Kato’s inequality 
for the Laplacian A A  = (-iC + A)’ and has been proved rigorously by Simon (1979) 
(cf also Hess et a1 1977). Since in the classical partition function Zc,( t ;  f iA) constructed 
with the classical Hamiltonian fiA( p ,  q )  = ( p + A( q ) ) 2  + V (  q )  by a coordinate transla- 
tion of the momentum variables the magnetic potentials A drop out, within the classical 
theory no diamagnetism does exist. This is the content of the so-called ‘Bohr-van 
Leeuven theorem’ (Bohr 1911, van Leeuwen 1921). 

The classical spin at which we arrive is not unrelated to the classical mechanical 
spin models used previously. By demanding transitivity of the internal space under 
group actions, Schulman (1968) has concluded that classical spin models must be 
described by coset spaces of SO(3); in particular, the space S0(3) /S0(2)  of the internal 
coordinates of the mechanical object which he calls a ‘spinning dipole’ corresponds 
to our classical limit manifold Sz. However, our employed classical limit procedure 
does not lead to the two other possibilities for the group S 0 ( 3 ) ,  namely the coset space 
consisting of SO(3) itself and the trivial case S0(3)/S0(3) .  Other classical interpreta- 
tions and models for spin are discussed in Kochen and Specker (1967) and Bacry (1967). 

2. The classical limit 

Rather than restricting ourselves to the special case of a three-dimensional Euclidean 
space, we take as configuration space of our system any smooth N-dimensional 
Riemannian manifold ( M ,  gk,) which can be compact or non-compact, but which we 
assume (for simplicity) without boundary. In the non-compact case, it is also assumed 
to be complete. Before formulating the relevant Hamiltonian operators on this mani- 
fold, we briefly recall how they are constructed. 

Into the quantum mechanical formalism the spin enters via the transformation 
properties of the wavefunctions describing the spinning particles. The wavefunctions 
are required to transform under a representation of the spinor group Spin( N, W), which 
is defined ( N 2 3 )  as the simply connected covering group of SO(N,R). Hence the 
fact that the fundamental group of SO( N, W) is isomorphic to Z, implies the exact 
sequence 1 + Z2-, Spin( N ,  R) -, SO( N, R) +1. In order to construct a representation 
of Spin(N,W) consider a complex Clifford algebra Cliff(N) generated by the N 
elements y , ,  . . . , y N ,  which satisfy the anticommutation relations 

YIY) + Y,YI = 28, 

i, j = 1, . . . , N. These relations are invariant under the transformation T ~ Y ,  = E.;”=1 a,/y, 
for any A = ( a , )  E S O ( N ) .  Thus T A  is an automorphism of Cliff(N) which can be 
shown to preserve the centre of Cliff(N). Since every Clifford algebra is isomorphic 
to a corresponding matrix algebra and because every automorphism of a matrix algebra 
is inner, by T ( A ) ~ T ( A ) - ’  = TAY a projective representation A-, T ( A )  of SO( N) is 
defined. This representation can be made two-valued and becomes a representation 
of Spin( N)  by considering exp(dn)  with d.n being the representation of the Lie algebra 
so( N). From the semisimplicity of SO( N)  the isomorphism so( N) spin( N )  follows, 
and for any A E  S O ( N )  the representation d.rr can be calculated to be given by 
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& ( A )  =Z!<, a,,y,y, = Zt<, U , ~ ( T , ~ ,  where (T,/ =; (y ,y ,  - yJy,). Another way to look at this 
is the following. Each Clifford algebra becomes a Lie algebra by defining for p, y E 

Cliff( N)  the commutator [p ,  y ]  = B y  - yp as its Lie operation. Taking the subalgebra 
Cliff,(N) spanned by all the products of two generators of Cliff(N), i.e. Cliff,(N) = 
span,,, { y,yJ}, the Lie subgroup corresponding to the Lie subalgebra Cliff2( N) is then 
given by Spin( N). 

We want to implement the spin structure for quantum particles moving on the 
configuration manifold M. To this end let us consider the two principal bundles 9( M )  
and Y&h( M) over M with structure groups SO( N) or Spin( N)  respectively. 9( M )  
denotes the familiar frame bundle, while Y&m( M) is called the 'spin bundle'; its total 
space is a complex vector space on which Spin( N)  acts irreducibly. Let 4 be a section 
of 9 ( M )  and t,b be a section of 9'&&(M). For any X E  M we can identify 4 ( x )  with 
an element of S O ( N )  and +(x)  with an element of Spin(N).  If for any given 4 we 
can find a t,!t such that for the canonical projection s : S p i n ( N ) + S O ( N )  the relation 
s(t,b(x)) = +(x) is satisfied for all x E M then we have defined a spin structure on M. 
While such a lifting of 4 is locally always possible, it may not be global, e.g. if the 
second Stiefel-Whitney class of M is non-zero. In the following we will only consider 
manifolds admitting a spin structure (for conditions on M sufficient for this see Isham 
(1978) and Milnor (1963)). 

Our next aim is to construct a covariant derivative acting on the wavefunctions 
which are now sections in a vector bundle associated with Y&H( M). The Riemannian 
structure of M induces a natural connection on the tangent bundle T (  M ) ,  namely the 
Levi-Civita connection. This Levi-Civita connection determines a connection on the 
frame bundle 9 ( M )  which in turn fixes a connection on the spin bundle Yb'+~(kf) .  
In the same way as the connection on 9 ( M )  is determined by requiring that the 
corresponding covariant derivatives applied to the N frame have to vanish identically, 
the connection on Y&i+-z(M) is determined by the vanishing of the spinor derivatives 
of the yk. Here the yk, k = 1,. . . , N are generators of a Clifford algebra in each N 
frame as described above. With respect to local coordinates then the covariant spinor 
derivative on M is of the form (De Witt 1964) 

V"V J J -LE 4 y ky/rJk' (4) 
k ,  I 

where V, is the covariant derivative including the Levi-Civita connection and I':' are 
the coefficients of the frame bundle connection. Using the antisymmetry rf' = -r: 
we can write the 'gauge potentials' as r, = X k , /  ykylI'f' = EL,/ ak,T,k' and (4) becomes 

Now we are in a position to formulate our Hamiltonians. Let A be a smooth vector 
potential on M ,  i.e. a C" section of the cotangent bundle T*(  M ) .  The scalar potential 
V is assumed to be a continuous real-valued function on M which is bounded below 
and in the non-compact case sufficiently increasing such that I, exp( -rV(x)) dvol(x) < 
00 for all t > 0. Then we define 

v;=v,-$,. 

to be the local coordinate expression for the Hamiltonian of a quantum particle with 
spin on M. Here the y' are obtained by raising the indices of the yk contracting with 
the tetrads of the local N frame. Consequently the y' obey an anticommutation relation 
of the form y ' y k  + y k y '  = 2g'k, i.e. they generate a Clifford algebra associated with the 
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quadratic form g“. If the original y, are chosen to be Hermitian or  antiHermitian, 
then so are the y‘ and therefore H A  is a symmetric operator on the compactly supported 
CW-sections of a vector bundle associated with Y&%( M). Moreover, with the assump- 
tions above it can be shown that HA is essentially self-adjoint; the domain of its closure 
is a space of Sobolev type. 

With the help of the Ricci identity for spinors 
v;Jls, -V”5 - -I 

k J - 4 1 Y/YmRlmjk 
1, m 

the Hamiltonian H A  can be rewritten as 

where g = det(g,), R”,k are the components of the Riemann tensor with the above 
two indices referring to the local N frame, and where we have used the fact that 
ZJ,k,/,m y‘yky,ymR”lk = -2R,  R being the curvature scalar. Comparing this with the 
analogous expression ( 2 )  we observe that in the non-flat case the additional term 
-ah2R appears which, however, will d rop  out as h -. 0. 

Concerning the classical limit of partition functions we can fall back on already 
existing results. While the limit as h + 0 for partition functions of the above type has 
been derived by Neumann-Dirichlet bracketing techniques (Hogreve 1983) or via 
functional integration methods (Hogreve et a l  1983), Schrader and  Taylor (1984) have 
given a complete asymptotic expansion in h. More specifically, they have proved the 
following: let G be a semisimple connected compact Lie group, 8 its Lie algebra and  
P-. M a principal G bundle with a given connection on P, the connection being 
regarded as a 8-valued 1-form. In  local coordinates it has the coefficients uJ which 
are supposed to be C“. Let 7~ be an  irreducible unitary representation of 8 with 
fundamental weight A o .  Recall that the unitary irreducible representations of 8 can 
be indexed by a lattice in a Weyl chamber, and let T ,  denote the representation 
corresponding to the point nAo in this chamber. Furthermore, let d,  be the dimension 
of the representation space of T ,  as given by Weyl’s formula. Relate h and n by 
h = l / n .  Then as n + 00 the partition function for the sequence of Hamiltonians 

H ,  = -fi2g-‘/2 ( c l +  n-,(a1))g‘kg’’2(Vk + 7T,,(ak))+ih7r,(a0)+ v (6) 
1.k 

has a complete asymptotic expansion 

d i ‘  Tr  exp(-tH,) - h ’ (zo(r) + Z , ( t ) h  + z,(t)R* + . . .) (7 )  

where Zo(t) is given by the classical partition function 

. U t ;  H I =  {{ { dvoHx) d N p  + ( A )  exp - - t  1 g‘k(x)[pJ+A(al(x))l  
T*( M I \(, ( 1 . k  

x [ ~ k + A ( ~ k ( x ) ) l + A ( a , ( x ) ) +  .(.))I. 
The classical phase space T * ( M )  x A. consists of the product of the tangent bundle 
T * ( M )  and the coadjoint orbit Aoc q* containing A,,; d p  is the natural normalised 
measure on Ao .  

In our case we have G = Spin( N )  and the irreducible representation of g = spin( N )  
constructed above is generated by the a2,. It is easy to verify that the a,, are unitary; 
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hence the representation is unitary and by A" we denote the corresponding fundamental 
weight, and by T,, the representation associated to nAo. The classical limit for ( 5 )  
follows from the sequence of Hamiltonians 

h 
4 

h 
4 

- I i 2  (-ihV, + i -  rn(rJ)  + A, -ihVk + i -  r,( r k )  + AA H A ; n  = g 
J. k 

which are in the form appropriate for the application of ( 6 )  and ( 7 ) .  Therefore in  the 
limit as h = 1/ n + 0 

lim { d , ' h - N  Tr exp(-tH,,,)} 
n-cc 

* "  / I -  

where, by the coordinate shift 8 + 8 -$(T,(x)) - A J ( x )  in momentum space, the T J  
and AJ containing terms are eliminated. Only that part of the external electromagnetic 
field which couples to the spin survives in the classical limit. 

3. The classical paramagnetic inequality 

We want to prove the classical paramagnetic relation 

for all t > O  and smooth vector fields A. To this end we consider the term by which 
both classical partition functions differ, namely 

Since d p  is a probability measure we can apply Jensen's inequality to estimate R(  t ;  x )  
from below 

exp[ - i t  J , O d p ( A ) A ( ~  1.k 5 k ( x ) d k ( x ) ) ]  R ( C  x )  (10) 
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for all x E M ,  r > 0. Next we want to show that the integral over the coadjoint orbit 
in the exponential of the left-hand side of (10) vanishes. More generally 

for any X E 9, any coadjoint orbit A o c  g*, 9 a semisimple Lie algebra of a compact 
Lie group G. By definition, the measure p on A. is induced by the Haar measure y 
on G via p(A) = doy(AG) for any subset A c  A. corresponding to a measurable set 
A G  c G; here A G  = {g E GIAd*(g)Ao E A} and we consider R* (originally defined 
only on the Cartan subalgebra Rc 9) as extended to 9* by setting it to zero on A'). 
As before, do denotes the dimension of the representation associated with the funda- 
mental weight A o .  Observing that, as g ranges over G, Ad*(g)Ao ranges over A0 we 
see that (1 1 )  is equivalent to 

But because Ad* restricted to A. is irreducible, (12) is an immediate consequence of 
the Schur orthogonality relation (which can be found, for example, in Kirillov (1976, 
ch 9.2)). Note that in the case of G being simple, Ad itself is irreducible and the Schur 
orthogonality gives 5, Ad(g-') dy(g)  = 0 implying (12). Therefore R ( I ;  x ) s U  for all 
x E M, I > 0 and (9) is proved. 

Finally, as an explicit example we consider the situation of 'usual' quantum spins, 
N = 3, G = Spin(3) = SO(3) = SU(2). Here the yi can be taken as the familiar Pauli 
matrices U,, i = 1,2,3,  and the coadjoint orbit A, is isomorphic to the sphere S 2 .  Since 
a,ak - a k a ,  = 2i E.:=, ~~~~a~ the term containing the field tensor can be expressed with 
the help of the dual field tensor FT = Ek,, E ~ ~ ~ F ~ '  as 

Then the classical spin partition function (8) becomes 

x g(x)1'2 d x  d3p dw (13) 

where w = (6, c p )  is a vector on S' with Os 8 s T, 0 s  cp < 2 ~ ,  dw = ( 4 ~ ) - '  sin 8 d6 dcp 
and the I ,  can be calculated as I l ( w )  = $ sin B cos p, /,(U) = f sin B sin cp and 13(w) = 
1 cos B. Of course (13) can be used to verify the paramagnetic properties of the spin 
partition function directly. Moreover, choosing special field configurations which allow 
explicit calculations, (13) shows that the spin part of the classical partition function 
indeed gives a non-trivial contribution, i.e. in general Zc,( I ;  H O )  < Zc,( I ;  HA). So this 
is a genuine paramagnetic effect. 

4. Concluding remarks 

Considering general spin Hamiltonians we have seen that they can be written in a 
form which allows the application of results about the classical limit derived originally 
within the context of Yang-Mills theory. In the classical limit the spin degrees of 
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freedom manifest themselves as elements of the coadjoint orbit of the spin group 
(which depend in general on the initially chosen representation). The resulting classical 
partition function includes integration over such a coadjoint orbit, and  by estimates 
on this integration we have demonstrated that the partition function in an  external 
electromagnetic field is greater than without the field. Thus we have proved the 
paramagnetism of spin on a classical level. We conclude that non-classical quantum 
effects must be responsible for the failure of a corresponding general quantum version 
of the paramagnetic inequality. 

Rather than ordinary vector potentials we could have allowed Hamiltonians includ- 
ing non-commutative Yang-Mills potentials AYM. Then simultaneously as h + 0 the 
representation of the Yang-Mills gauge groups also has to be varied. The classical 
partition function is still of the form (8), except that now the ordinary field tensor has 
to be replaced by a classical limit quantity of the Yang-Mills field tensor FYM. 
Nevertheless, relations (lo)-( 12) d o  not depend on these modifications. Therefore 
also in this situation the paramagnetic inequality (9) holds true. 
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